منابع مشابه
Cavities and Channels in Electrides
The three-dimensional geometries of cavities and channels in four electrides are determined in detail with the aid of computer graphics methods. Previous theoretical and experimental studies support the view that electrons are trapped in cavities and interact through connecting channels. The magnetic coupling constants and the dimensionalities of the magnetic interactions are consistent in all ...
متن کاملDensity-functional description of electrides.
Electrides are a unique class of ionic solids in which the anions are stoichiometrically replaced by electrons localised within the crystal voids. There are only nine electrides with known crystal structures and their study represents a challenge for theory. A systematic investigation of their electronic structure is conducted using semilocal density-functional theory (DFT) in this article. The...
متن کاملElectrides and Their High-Pressure Chemistry
Recently, electrides were discovered in many systems (especially those containing alkali and alkali earth metals) at high pressures. An electride can be defined as an ionic compound where the role of an anion is played by a strongly localized electron density. High-pressure emergence of electrides is due to the Pauli expulsion of valence electrons from the core, while some electrides are better...
متن کاملOn the electrostatic nature of electrides.
The nature of electron localization in electrides is explored by examining their electrostatic features. Ab initio investigations of three experimentally synthesized and two theoretically modeled organic electrides are performed in order to unveil the characteristics of the trapped electron and to understand the reason for their low thermal stability. A single molecular unit of the electride ex...
متن کاملDimensionality crossover in magnetism: from domain walls (2D) to vortices (1D).
Dimensionality crossover is a classical topic in physics. Surprisingly, it has not been searched in micromagnetism, which deals with objects such as domain walls (2D) and vortices (1D). We predict by simulation a second-order transition between these two objects, with the wall length as the Landau parameter. This was confirmed experimentally based on micron-sized flux-closure dots.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Chemistry C
سال: 2020
ISSN: 2050-7526,2050-7534
DOI: 10.1039/d0tc01223h